Shoreline Stabilization

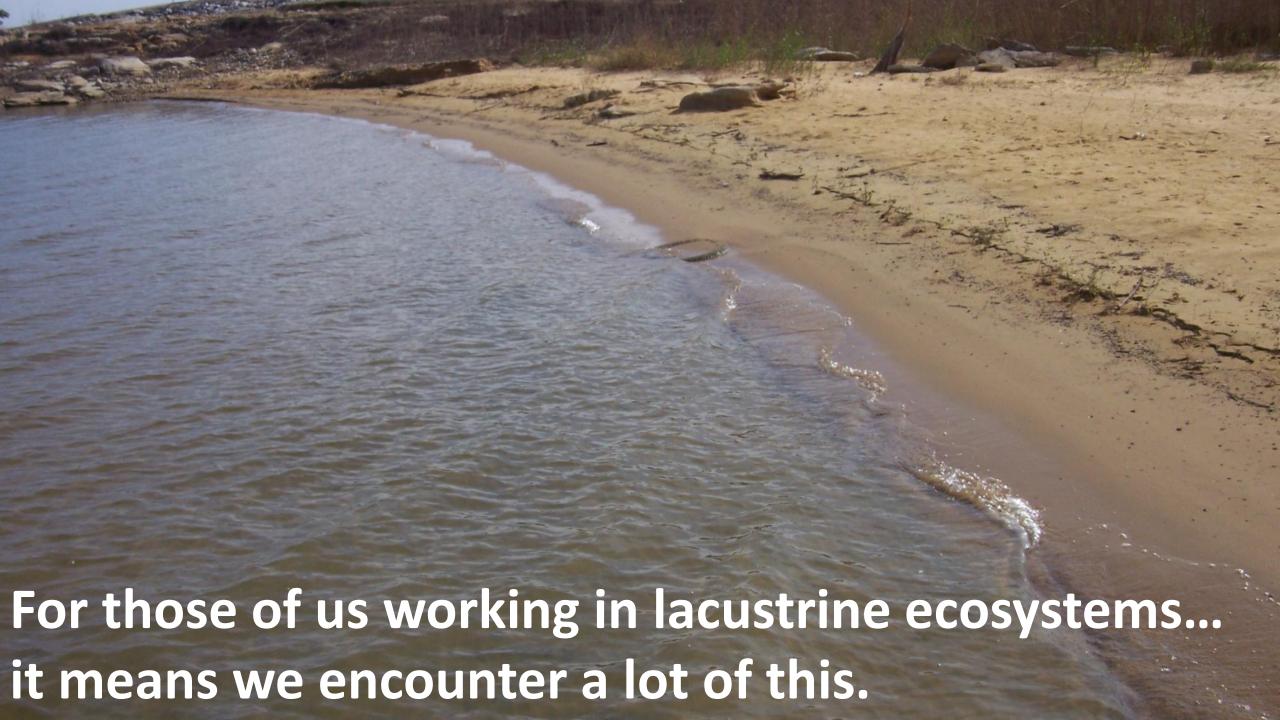
Lynde L. Dodd – Research Biologist

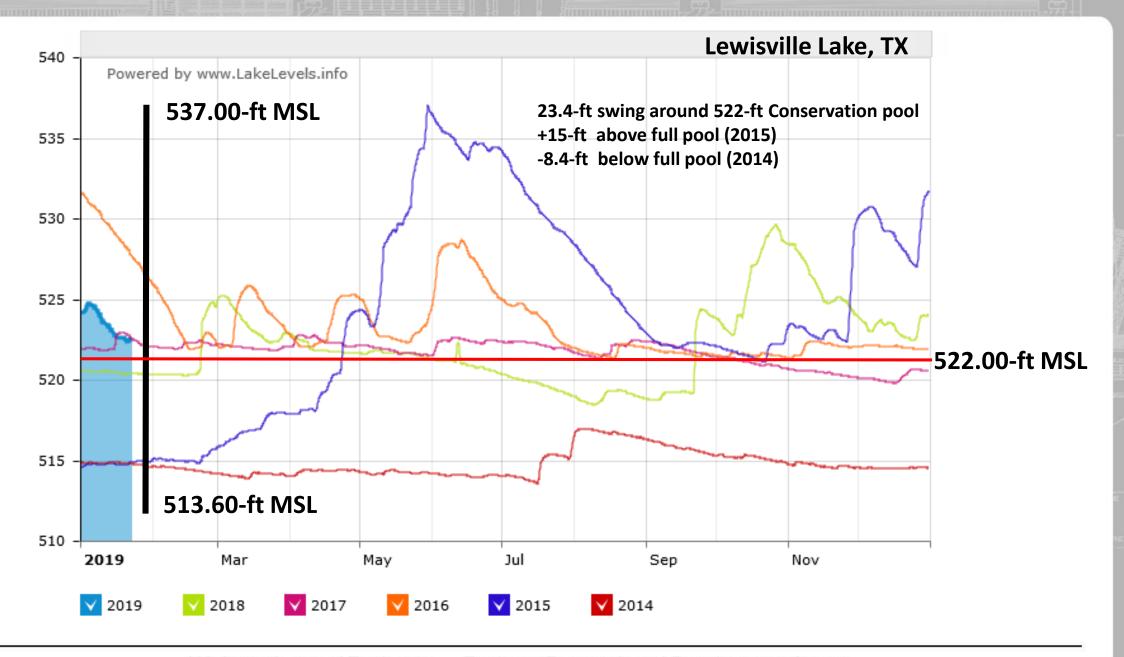
U. S. Army Corps of Engineers - Engineer Research and Development Center; Lewisville Aquatic Ecosystem Research Facility, Lewisville, Texas

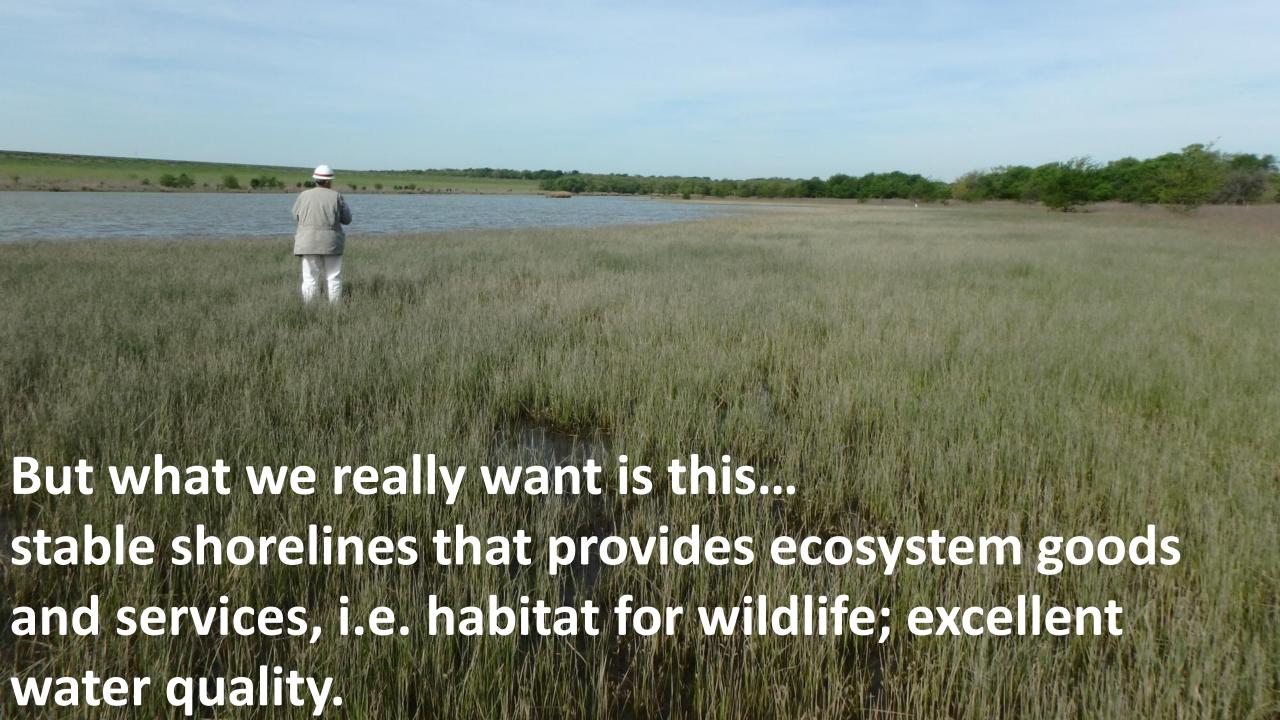
Reservoir Habitat Restoration Workshop Reservoir Fisheries Habitat Partnership 2019 Annual Meeting

Kansas City, KS, USA

October 5th, 2019 11:50-12:20

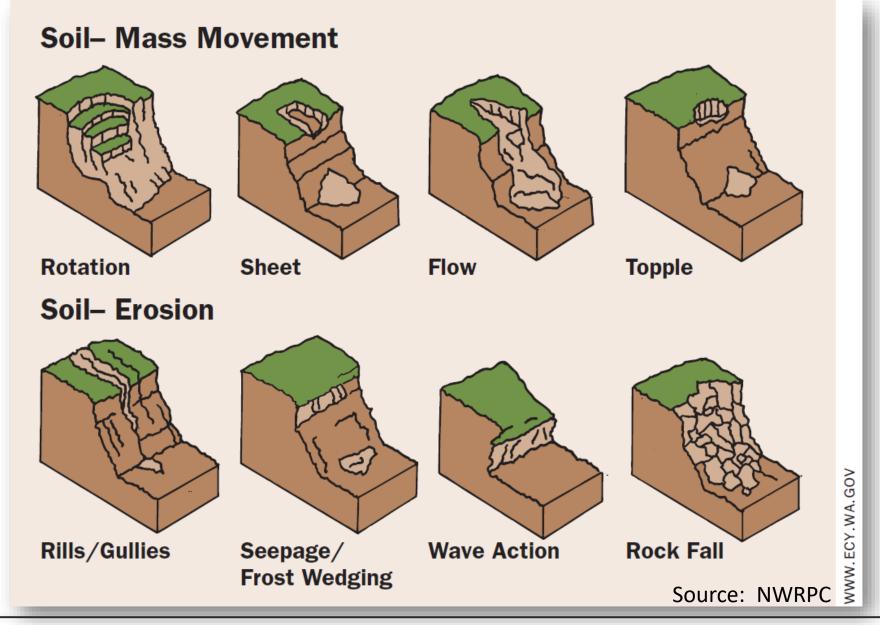

Hydrology – makes life a little challenging....


Aquatic ecosystem restoration/habitat enhancement


Navigation
Flood Risk Management
Water Operations

What is it about hydrology that is so troublesome for water resource managers?

- > Water you either have it or you don't
 - > Regional variability (east coast to west coast)
 - > Seasonality (spring, summer, fall, winter)
 - > Flow regime
 - Water rights (surface water/ground water)
- ➤ When you do get it not sure what you're gonna get along with those H₂O molecules i.e. excess nutrients, toxic contaminants, debris (not the good kind that helps to stabilize shorelines, but mostly trash)



What are common issues that cause shoreline erosion (an otherwise natural process) or more importantly, shoreline instability?

- > Sediment transport (erosion vs. accretion)
 - ➤ Geology generally drives this unconsolidated material (sand, gravel, clay, silt); consolidated material like bedrock
 - > Storms
 - ➤ Surface water runoff; long term inundation causing die-off of riparian/terrestrial vegetation; ice/wind; gully formation
 - ➤ Wave energy
 - Splash, overwash, sediment drift; can be intensified with hard structures i.e. bulkheads.

- > Anthropogenic influences
 - > Development that increases impervious surfaces
 - Control structures/bulkheads/revetments (wave energy)
 - > Removal of riparian/aquatic vegetation along shoreline
 - > Includes native or invasive vegetation
 - > Water operations
 - Navigation
 - > Flood risk management (WATER LEVEL FLUCUATIONS)
 - Recreation (wave activity)

What is a LIVING SHORELINE?

"A shoreline management practice that provides erosion control benefits; protects, restores, or enhances natural shoreline habitat; and maintains coastal processes through the strategic placement of plants, stone, sand fill, and other structural organic materials (e.g. biologs, oyster reefs, etc)." (NOAA)

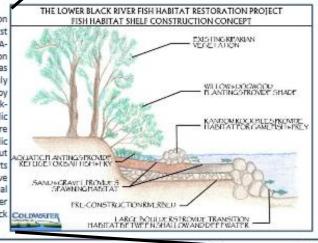
What are some techniques to stabilize sediments to achieve a LIVING SHORELINE?

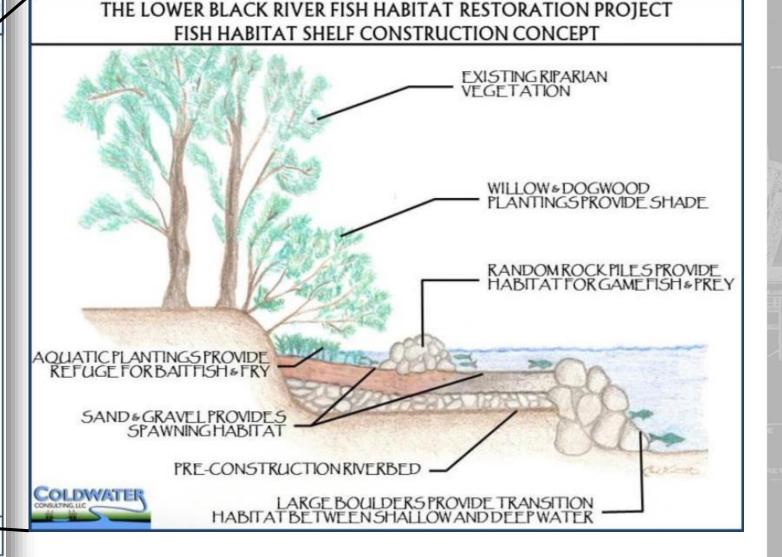
Other than minimizing disturbance and avoiding only hard armoring...

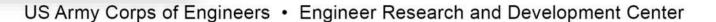
- ➤ Soft armoring in low energy areas degradable materials (coir), vegetation
- ➤ Mix of both hard infrastructure and vegetation in moderate to high energy areas i.e. riprap planted with high stability rated vegetation; high density outplantings of suitable woody/emergent/submersed vegetation

The Lower Black River Fish Habitat Restoration Project - Phase I

City of Lorain, Ohio


Funding provided by NOAA under the Great Lakes Restoration Initiative (GLRI)


A \$1.7 million grant from NOAA funded Phase I of The Lower Black River Fish Habitat Restoration Project. The project design was completed by ARCADIS U.S., Inc. and Coldwater Consulting, LLC, was constructed by Mark Haynes Construction, Inc., and was completed in December of 2011. This project restored habitat for fish and wildlife in the lower Black River, an area that is highly deficient of aquatic structure. The project included construction of over 3,000 linear feet of fish habitat shelves, restoration of eroding river banks utilizing natural bank stabilization and bio-engineering techniques, and installation of other fish habitat features including rootwad revetments and boulde clusters. An invasive plant species (Phragn australis) was also removed within the area and over 4,800 native plants we



River bank restoration utilizing bio-engineering techniques

Public outreach and education efforts introduced the first annual Black River Kayak-A-Thon, the first of it's kind or the Black. This event was coupled with Port Fest on July 3, 2011 and was attended by over 70 paddlers. The Kayakoutreach designed to get the public involved and educated about ecological restoration efforts that are underway to improve recreational opportunities, and water quality in the lower Black COLDWATE River.

Common Plants of Riparian Areas - Central - Southwest Texas With Wetland Indicator (WI) and Proposed Stability Rating (SR)

Sedges / Grasses		SR	Forbs	WI		Woody	WI	SR
Spikerushes (most)		6	Water willow	ORI	7	Buttonbuch	OBI.	8
Emory sedge	OBL	9	Ludwigia	OBL	3	Bald Cypress	OBL	9
Sawgrass	OBL	9	Watercress *	OBL	3	Indigobush amorpha	OBL	7
Rice cutgrass	OBL	6	Scouring rush	OBL	6	Seepwillow baccharis		
Water bentgrass	OBL	5	Marsh aster	OBL	3	(B. salicifolia)	FACW	
Cattail	OBL	9	Marsh fleabane	OBL	5	Black willow	FACW	
	OBL	9	Smooth bidens	OBL	5	Arroyo wa yw	FACW	
Porcupine sedge	Opr	5	Water hyssop	OBL	3	Sandbar willow	1.011	
Black sedge	OBL	6	Burhead	OBL	3	Spiny aster	FACW	
Teal lovegrass	OBL	4	Penny ort	OBL	3	Box elder maple	FACW	
Knotgrass	FACW		Monkeyflower	OBL	3	Retama	FACW	
Hairyseed paspalum	FACW		Swamp rosemallow	ORI	5	Possum haw	FACW	
Bushy bluestem	FACW		California loostrife	OBL		Sycamore	FAC	6
Flatsedges (most)	FACW		Cardinalflower	FACW		L. tern cottonwood	FAC	7
Common reed	FACW		Tall aster	FACW		Pecan	FAC	6
Gulf cordgrass	FACW		Spiny aster	FACW		Little walnut	FAC	7
White top sedge	FACW		Large buttercup	FACW		Roosevelt baccharis		
Rushes (most) OBL or	FACW	6	Smartweed (most)	FACW		(B. neglecta)	FAC	6
Aparejograss	FACW		Bog nettle	FACW		American elder	FAC	6
Spike bentgrass	FACW	5	Dock (most)	FACW	7 3/4	Roughleaf dogwood	FAC	6
Barnyardgrass	FACW		Mint *	FACW		Sugar hackberry	FAC	5
Junglerice *	FACW		Smallhead sneezeweed	FACW		American elm	FAC	6
Rabbitsfoot grass *	FACW	3	Sesbania	FACW	7 3	Cedar elm	FAC	6
Carolina canarygrass *	FACW	3	Frogfiuit	FAC	4	Mexican ash	FAC	6
Wetland sprangletops	FACW	4	Late boneset	FAC	5	Bur oak	FAC	6
Switchgrass	FAC	,	Honweed	TAC	-	Cininquapini oak	TAC	-
Eastern gammagrass	FAC	9	Shield fern	FAC	6	Lindheimer indigo	FAC	5
Big sacaton	VAC	÷	Ciant ragweed	FAC	3	Wafer ash (Ptelea)	FAC	6
Alkali sacaton	FAC	7	Annual sumpweed	FAC)	2	FAC	4
Lindheimer muhly	FAC	7	Brazilian verbena *	FAC	4	Greenbriar	FAC	5
Wildrye	FAC	5/6	Cocklebur	FAC	3	Poison ivy	FAC	5
White tridens	FAC	5	Tall goldenrod	FACU	6	Grape vine (most)	FAC	5
Vine-mesquite	FAC	6	Common ragweed	FACU	2	Japanese honeysuckle *	FAC	6
Seep muhly	FAC	6	Frostweed	FACU	6	Live oak	FACU	6
Nimble-will	FAC	5	Maximilian sunflower	FACU	6	Netleaf hackberry	FACU	
Broadleaf Uniola	FAC	5	Heath aster	FACU	5	Red mulberry	FACU	6
Dallisgrass *	FAC	7	Illinois bundleflower	FACU	4	Mesquite	FACU	5
Vasevgrass *	FAC	5/6	Clammyweed	FACU	3	Huisache	FACU	5
Rustyseed paspalum	FAC	5	Castor bean *	FACU	3	Western soapberry	FACU	6
Giant reed (Arundo)*	FAC	7	Western ragweed	UPL	5	Bumelia	FACU	6
St Augustine grass *	FAC	6	Field ragweed	UPL	5	Black walnut	FACU	6
Buffalograss	FACU	3	Mexican sagewort	UPL	5	Desert willow	FACU	6
Indiangrass	FACU	7	Turk's cap	UPL	5	Carolina snailseed	FACU	4
Johnsongrass *	FACU	6	Toothed goldeneye	UPL	5	Chinese tallow *	FACU	
Bermudagrass *	FACU	6				Gravelbar bricklebush	UPL	5
Big sandbur	FACU	7				Slender bricklebush	UPL	5
Dichanthelium (most)	FACU	4				Burrobush	UPL	6
Southwestern bristle	UPL	5	WI - Wetland Indica	ton Coto		Whitebrush	UPL	6
King Ranch bluestem *	UPL	5	(Region 6 US		Sorres	Juniper	UPL	5
Creeping muly	UPL	6	(Region 6 C.3	11 W.3)		Mexican persimmon	UPL	5
*Indicates Introduced Spe		•	OBL Obligate Wetland	Almost -	.1	Spiny hackberry	UPL	5
marcines miroduced spe			occur in wet areas.	Aimost a	uways	Bois d'are	UPL	6
CP Carbillate Paris /Da		coole		land O-		Vitex *	UPL	6
SR - Stability Ratings (Draft) on a scale of 1 – 10. Based on USFS GTR-47, by			FACW Facultative Wetland Occur in			Ligustrum *	UPL	6
Al Winward. Bare ground has a SR of 1.			wet areas 67-99% probability. FAC Facultative About equally likely			Chinaberry *	UPL	6
						Cimiaterry .	OFL	•
Anchored rock or logs have a SR of 10. A SR of 7 (or 6) is considered the			to occur in wet and					
A SA of / (or 0) is considered the			FACU Facultative Upland Occur in			D : 134 2000		

minimum for acceptable bank stability. Woody plants, when associated with stabilizing grasses and sedges provide a higher stability rating that shown

wet areas 1-33% probability; UPL Obligate Upland Almost always

occur in non wet area

For comments, additions or corrections

Revised May, 2009

Spikerushes – SR 9

Waterwillow – SR 7

Buttonbush – SR 8

Bulrushes – SR 9

Black willow – SR 7

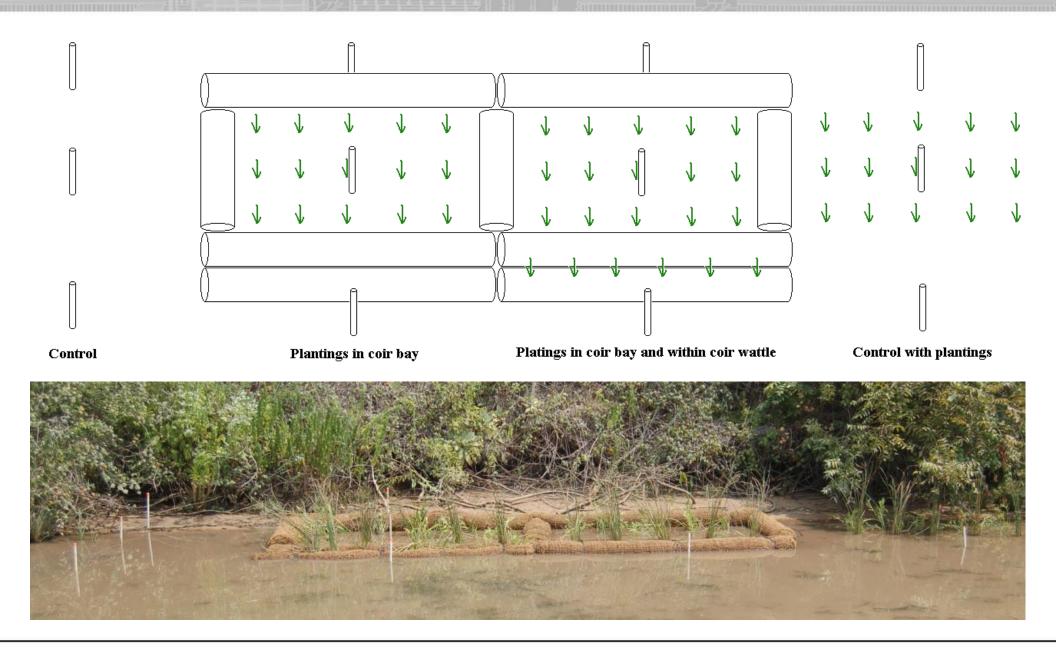
Switchgrass – SR 9

Eastern gamma – SR 9

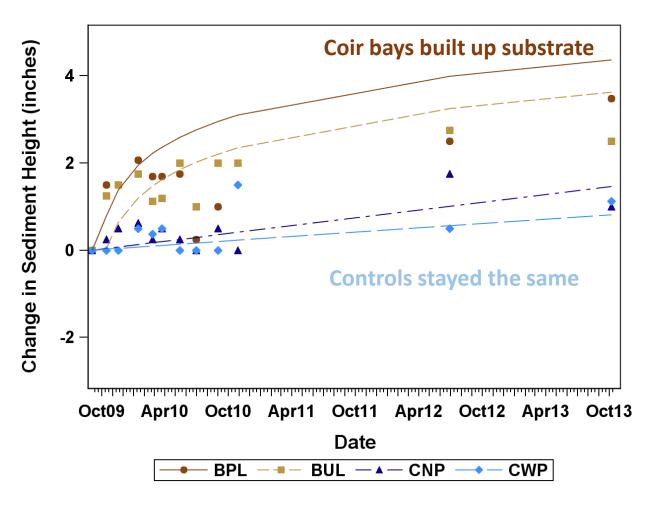
SR - Stability Ratings (Draft) on a scale of 1 – 10. Based on USFS GTR-47, by Al Winward. Bare ground has a SR of 1. Anchored rock or logs have a SR of 10. A SR of 7 (or 6) is considered the minimum for acceptable bank stability. Woody plants, when associated with stabilizing grasses and sedges provide a higher stability rating that shown

Winward, Alma H. 2000. Monitoring the vegetation resources in riparian areas. Gen. Tech. Rep. RMRSGTR-47. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 49 p. https://www.fs.fed.us/rm/pubs/rmrs_gtr047.pdf

Bioengineering Pilot Project with City of Austin and LAERF - 2009


Objective: Test living shoreline approach to stabilize shoreline and restore habitat function – biodegradable material (coir logs) and

wetland vegetation (Clamann - COA)



US Army Corps of Engineers • Engineer Research and Development Center

US Army Corps of Engineers • Engineer Research and Development Center

Bioengineering Pilot Project with City of Austin and LAERF - 2009

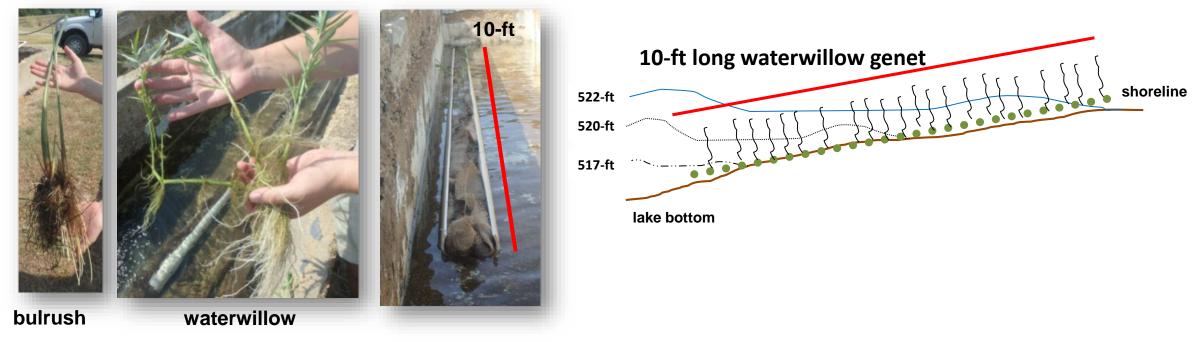
Results of plantings in control and in coir bays:

Pickerelweed - none remaining after 4 years

American bulrush - none remaining after 4 years

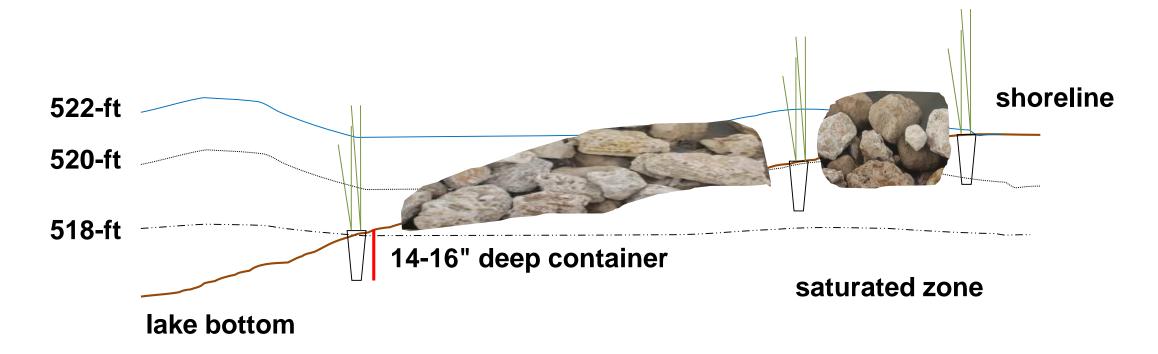
American water-willow in control = avg 50 stems/bay
in coir bays = avg 247 stems/bay

Bioengineering Pilot Project with City of Austin and LAERF - 2009


Large Scale Implementation with City of Austin and LAERF - 2014

US Army Corps of Engineers • Engineer Research and Development Center

Investigate experimental strategies for outplanting in reservoirs with fluctuating water levels...


Acropetal – growth or development upward from base or point of attachment – outward toward shoot and root apex...

Touchette, B. W., J. W. G. Moody, C. M. Byrne, and S. E. Marcus. 2013. Water integration in the clonal emergent hydrophyte, Justicia americana: benefits of acropetal water transfer from mother to daughter ramets. Hydrobiologia 702:83-94.

Experimental strategies for outplanting in reservoirs with fluctuating water levels...

Chasing water levels with deeper containerized rhizomatic plants in concert with hard armoring...

Lake and Reservoir Management, 25:208–216, 2009 G Copyright by the North American Lake Management Society 2009 (SSN GTR3-2003) print / 1000-2581 online DOI: 10.1000/PGS1000-2581-000-2581

Shoreline stabilization using riprap breakwaters on a Midwestern reservoir

John P. Severson, 1 Jack R. Nawrot, 2, and Mike W. Eichholz2

¹ Forbes Biological Station, Frank C. Bellrose Waterfowl Research Center, Illinois Natural History Survey, Havana, IL 62644, USA

²Cooperative Wildlife Research Laboratory, Southern Illinois University, Carbondale, IL 62901, USA

Abstract

Severson, J.P., J.R. Nawrot and M.W. Eichholz. 2009. Shoreline stabilization using riprap breukwaters on a Midwestern reservoir. Lake Reserv. Manage. 25:208–216.

Shoreline crosion causes shoreline habitat loss and degradation and contributes to tedimentation, a major impairment in many lakes throughout the United States. Various shoreline stabilization techniques have been employed, but many are unsuccessful under high wave stress, do not contribute to shoreline habitat, or are too expensive to install on a large scale. Extensive erosion and lack of shoreline habitat on Kinskald Lake in southern Illinois prompted lake managers to design and install rigrap breakwaters to protect the lititoral zone and bank as well as enhance habitat. The offshore breakwaters were shown to decrease wave height and associated crossion, allowing banks to start stabilizing and the protected lititoral zone to begin sequestering seldment. Terestrial area inside the protected zones was regressed against age since protection, bank height, and distance from bank to produce a terrestrialization predictive model. Vegetation richness was much greater at protected sites than unprotected sites, and vegetation cover increased with age since protection. The rigrap breakwaters were successful at bank stabilization and habitat enhancement and should therefore be considered for tone where these arthributes are desired.

Key words: breakwater, shoreline enhancement, shoreline erosion, shoreline stabilization, wave energy

Reservoirs are important reply, flood control, and wil are impacted by water qu 2002). Suspended sedimen United States (IEPA 2002, to water quality degradation which affects recreational of treatment costs (IEPA 1978 fauna are also affected. Sur etation (Jackson and Starret (Karr et al. 1985, Cuker 19 and Robinson 2003) to shift structure as well as decline a decreased photic zone, al ical effects on respiration, f mentation can result in unst invertebrates, homogenize

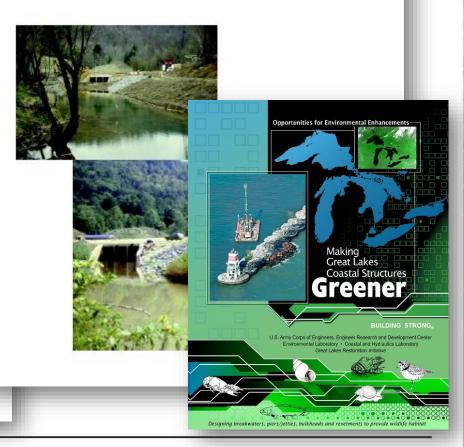
*Corresponding author: jnawn

Monitoring the Vegetation Resources in Riparian Areas

Alma H. Winward

Reservoir Fish Habitat Management

a project of the


Suggested citation

Miranda, L.E. 2017. Reservoir fish habitat management. Lightning Press, Totowa, New Jersey. 306 pp.

ISBN 978-0-692-79872-0

United States Department of Agriculture Natural Resources Engineering Field Handbook

Chapter 16 Streambank and Shoreline Protection

References/helpful links:

Bailey, P. 2014. A Sustainable Design Manual: Engineering With Nature using Native Plant Communities. U.S. Army Corps of Engineers for EWN Program, Engineer Research and Development Center. https://ewn.el.erdc.dren.mil/

Clamann, A. City of Austin Watershed Protection Department "Application of Coir Logs and Emergent Vegetation for Urban Lake Shoreline Stabilization" http://texasriparian.org/wp-content/uploads/2014/10/clamann coir URS.pdf

Dick, G. O., Smart, R. M. and Dodd, L. L. 2013. Propagation and establishment of native plants for vegetative restoration of aquatic ecosystems, <u>ERDC/EL TR-13-9</u>, U.S. Army Engineer Research and Development Center, Vicksburg, MS.

Great Lakes Restoration Initiative. Lower Black River Fish Habitat Restoration Project – Phase I, City of Lorain, Ohio Fact Sheet. <a href="https://www.cityoflorain.org/DocumentCenter/View/594/Lower-Black-River-Fish-Habitat-Restoration-Phase-I-Informational-Sheet-PDF?bidId="https://www.cityoflorain.org/DocumentCenter/View/594/Lower-Black-River-Fish-Habitat-Restoration-Phase-I-Informational-Sheet-PDF?bidId="https://www.cityoflorain.org/DocumentCenter/View/594/Lower-Black-River-Fish-Habitat-Restoration-Phase-I-Informational-Sheet-PDF?bidId="https://www.cityoflorain.org/DocumentCenter/View/594/Lower-Black-River-Fish-Habitat-Restoration-Phase-I-Informational-Sheet-PDF?bidId="https://www.cityoflorain.org/DocumentCenter/View/594/Lower-Black-River-Fish-Habitat-Restoration-Phase-I-Informational-Sheet-PDF?bidId="https://www.cityoflorain.org/DocumentCenter/View/594/Lower-Black-River-Fish-Habitat-Restoration-Phase-I-Informational-Sheet-PDF?bidId="https://www.cityoflorain.org/DocumentCenter/View/594/Lower-Black-River-Fish-Habitat-Restoration-Phase-I-Informational-Sheet-PDF?bidId="https://www.cityoflorain.org/DocumentCenter/View/594/Lower-Black-River-Fish-Habitat-Restoration-Phase-I-Informational-Sheet-PDF?bidId="https://www.cityoflorain.org/DocumentCenter/View/594/Lower-Black-River-Fish-Habitat-R

Miranda, L. E. 2017. Reservoir fish habitat management. Lightening Press, Totowa, New Jersey. 306 pp.

National Oceanic and Atmospheric Administration. Understanding Living Shorelines. https://www.fisheries.noaa.gov/insight/understanding-living-shorelines

Severson, J. P., J. R. Nawrot, and M. W. Eichholz. 2009. Shoreline stabilization using riprap breakwaters on a Midwestern reservoir. Lake and Reservoir Management 25:208-216.

"The Shoreline Stabilization Handbook" Northwest Regional Planning Commission (NWRPC). St. Albans, Vermont. Accessed 3October 2018. https://www.uvm.edu/seagrant/sites/default/files/uploads/publication/shorelinestabiliationhandbook.pdf

Touchette, B. W., J. W. G. Moody, C. M. Byrne, and S. E. Marcus. 2013. Water integration in the clonal emergent hydrophyte, Justicia americana: benefits of acropetal water transfer from mother to daughter ramets. Hydrobiologia 702:83-94.

USACE, 2002, Making Great Lakes Coastal Structures Greener, Engineer Research and Development Center Booklet, https://ewn.el.erdc.dren.mil/pub/GLGB-Booklet.pdf

USDA NRCS Engineering Field Handbook, Part 650, Chapter 16, Streambank and Shoreline Protection. December 1996. https://efotg.sc.egov.usda.gov/references/public/IA/Chapter-16_Streambank_and_Shoreline_Protection.pdf

Webb, M. A., r. A. Ott, Jr., C. C. Bonds, R. M. Smart, G. O. Dick, and L. L. Dodd. 2012. Propagation and establishment of native aquatic plants in reservoirs. Texas Parks and Wildlife Management Data Series No. 273. 61 pgs.

Winward, Alma H. 2000. **Monitoring the vegetation resources in riparian areas. Gen. Tech. Rep. RMRSGTR-**47. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 49 p. https://www.fs.fed.us/rm/pubs/rmrs_gtr047.pdf

Lynde Lynne Dodd, Research Biologist, CERP U S Army Engineer Research and Development Center, Lewisville Aquatic Ecosystem Research Facility <u>Lynde.L.Dodd@usace.army.mil</u>

US Army Corps of Engineers • Engineer Research and Development Center

Up next...

Shoreline Stabilization: Hard Armoring

Jeremy Shiflet, Kentucky Department Fish and Wildlife