

Establishment Methods

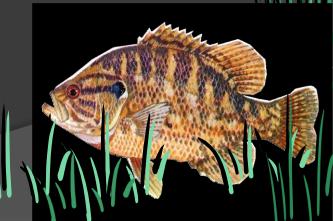
Mike Mounce, Division of Fisheries, Illinois Department of Natural Resources

Economics of Habitat

17 Lakes

 $P \le 0.05$

The Effects of Six Different Soil Treatments on the Establishment of Aquatic Plants in an Illinois Upland Reservoir


Michael Mounce - IDNR Nathan Badgett - EIU

Factors Limiting Establishment of Aquatic Plant Communities

- Lack of propagules
- Water level fluctuations asynchronous w/ life cycles
- Excessive turbidity and/or nutrients
- <u>Unsuitable terrestrial soils</u>
- Herbivory, Phys. & bio. (compet.) displacement

from: Smart, R. M., R. D. Doyle, J. D. Madsen, and G. O. Dick. 1996. Establishing native submersed aquatic plant communities for fish habitat. Pages 347-356 *in* L. E. Miranda and D. R. DeVries, editors. Multidimensional approaches to reservoir fisheries management. American Fisheries Society, Bethesda, Maryland.

Experimental Design

- American water willow, *Justicia americana*, dormant root crowns planted at five sites on Mill Creek Lake, Clark Co., Illinois
- Six treatment plots / site -0.25 m^2 (.45 x .6m)
- Control plots not aerated (5) & aerated (2)
- Plots spaced 0.33 m apart and aligned parallel to water's edge

Soil Treatments

Slow Release Fertilizer (Osmocote) – ¹/₄ tsp. / rhizome Liquid Iron w/ Other Micro Nutrients - 2 tsp. / plot Soil Sulfur – 40 g. / plot Sphagnum Peat Moss – 3 - 44oz. cups / plot "Mycorrhizal Fungi" – 2 tbs. soil / rhizome **Rooting Hormone** – dust rhizomes **Aerated Control** Control

2-way ANOVA of Parameters Measured (July)							
Parameters	Treatment		Site				
Survival	F=2.67	P<.05	F = 7.11	P<.01			
Stem Height	F=1.15	P>.05	F=12.18	P<.01			
Stem Diameter	F=0.94	P>.05	F=12.17	P<.01			
No. of Stems	F=2.09	P>.05	F=10.88	P<.01			
No. of Rhizomes	F=0.78	P>.05	F= 7.39	P<,01			
"Robustness"	F=1.62	P>.05		P 1			

Tukey Comparison of Means of Prop. Survival by Treatment (July)						
Trtmnt.	Mean	Homogenous	Grps.			
Rt. Hrmn.	8.0	A				
Sulfur	7.8	Α	ANOVA			
A. Cntrl.	7.0	A	F=2.67			
Mycorr.	6.4	B	P<.05			
Control	5.4	B				
Micro N.	5.1	B				
Macro N.	4.6	B				
Peat Moss	3.6	B				

2-way ANOVA of Parameters Measured (Sept.)						
Parameters	Treatment	Site				
Survival	F=2.11 P>.05	F= 9.22 P<.01				
Stem Height	F=1.57 P>.05	F=13.61 P<.01				
Stem Diameter	F=1.26 P>.05	F= 5.35 P<.01				
No. of Stems	F=1.36 P>.05	F= 6.45 P<.01				
No. of Rhizomes	F=4.51 P<.01	F=12.62 P<.01				
"Robustness"	F=0.80 P>.05	F=11.32 P<.01				

U

Tukey Comparison of Means of Number of Rhizomes by Treatment (Sept.) Homogenous Mean Grps. Trtmnt. ANOVA 11.6 Aer. Cntrl. A F=4.51 **6.7** Macro N. A **P<.01** Sulfur **6.0** A 5.2 Rt. Hrmn. B 4.8 B Control 4.6 Mycorr. B Micro N. 4.6 B 3.2 Peat Moss B

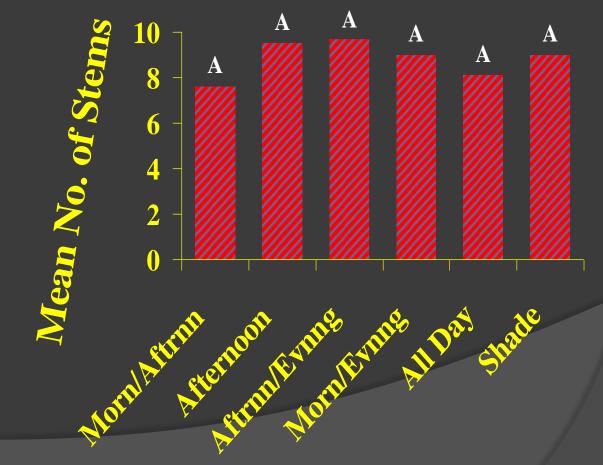
Conclusions

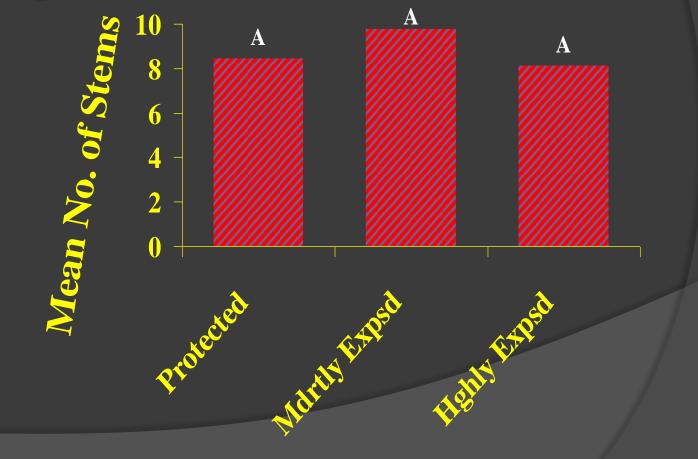
- Site may be a more important factor than soil treatments in limiting survival and development of aquatic plants (eggs /basket)
- Rooting hormone, sulfur, and aeration may enhance survival of dormant root crowns
- Aeration, macro nutrients, and sulfur may increase production of rhizomes, increasing the chances of long term survival of water willow

Stem Cutting Treatments and Site Factors Affecting Water Willow Establishment

Michael Mounce – IDNR Matt Prevo - EIU

K.I.S.S. METHOD




Results

Effects of Sunlight Exposure on Survival of Stem Tip Cuttings

Effects of Wave Exposure on Survival of Stem Tip Cuttings

Application of Results

- The use of stem tip cuttings appears to provide the optimal use of time and materials for est. water willow in lakes.
- Rooting hormone in combination with aeration, macro nutrients (slow release), and sulfur significantly enhances establishment of water willow and possibly other species.
- Planting more sites is preferred over fewer "large" plantings due to yet undetermined site specific effects on propagule survival.

Aquatic Vegetation Introduction in Lake Paradise, Coles Co., Illinois

`07-'08

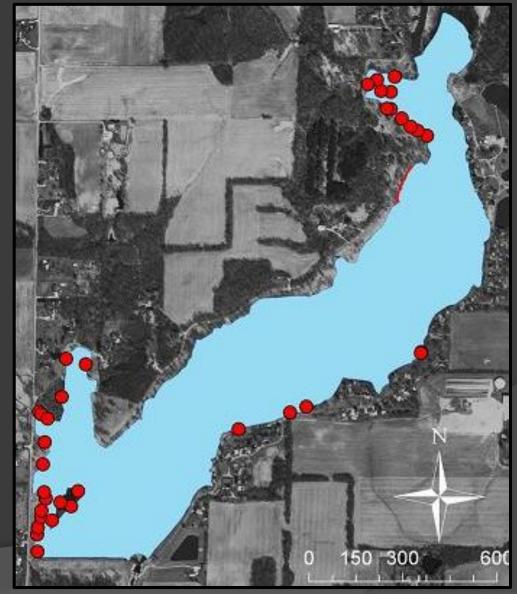
Michael Mounce – IDNR

Materials

30 rolls (100') - PVC-coated wire mesh (2"x4"x48", 14 Ga.) - cut 10' & 20' pieces 660 sticks rebar - (6.7'x1/2", 60 grade) @ 2,000 Plastic Cable Ties - (120 lb., 14", UV resistant)

@ 1,250 Plastic Cable Ties - (50 lb., 8", UV resistant)

Exclosure Size - Bigger?


7.94 <mark>ft</mark>² Large Small Dispersed

Small

Clustered

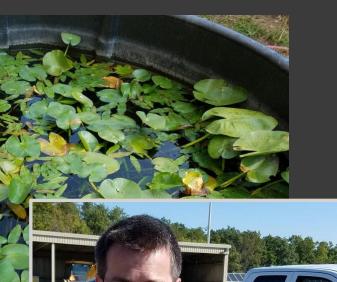
Planting Considerations - Exclosures

Sheltered from SW wind exposure due to potential ice damage

Emergent Species

 \mathbf{O}

Emergent Species


Troubles

Self-Perpetuating Habitat

Can be planted directly shallow better than too deep

alle Point Lake 2018, -1,<u>500+</u>Trees

4 8

PURPOSE Habitat (INHS) Sunlight-Penetration Shoreline Woods

Effective Habitat is a Function of Both Quality and Quantity

Improved Habitat Quality Will Provide Stability in Fish Populations